DOI: 10.1109/ACCESS.2020.2990738
Terbit pada 2020 Pada IEEE Access

Traffic Flow Forecast Through Time Series Analysis Based on Deep Learning

Mingfang Huang Jianhu Zheng

Abstrak

Traffic congestion is a thorny issue to many large and medium-sized cities, posing a serious threat to sustainable urban development. Recently, intelligent traffic system (ITS) has emerged as an effective tool to mitigate urban congestion. The key to the ITS lies in the accurate forecast of traffic flow. However, the existing forecast methods of traffic flow cannot adapt to the stochasticity and sheer length of traffic flow time series. To solve the problem, this paper relies on deep learning (DL) to forecast traffic flow through time series analysis. The authors developed a traffic flow forecast model based on the long short-term memory (LSTM) network. The proposed model was compared with two classic forecast models, namely, the autoregressive integrated moving average (ARIMA) model and the backpropagation neural network (BPNN) model, through long-term traffic flow forecast experiments, using an actual traffic flow time series from OpenITS. The experimental results show that the proposed LSTM network outperformed the classic models in prediction accuracy. Our research discloses the dynamic evolution law of traffic flow, and facilitates the decision-making of traffic management.

Artikel Ilmiah Terkait

Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method

Jibiao Zhou Changxi Ma G. Dai

26 Februari 2021

The real-time performance and accuracy of traffic flow prediction directly affect the efficiency of traffic flow guidance systems, and traffic flow prediction is a hotspot in the field of intelligent transportation. To further improve the accuracy of short-term traffic flow prediction, a short-term traffic flow prediction model based on traffic flow time series analysis, and an improved long short-term memory network (LSTM) is proposed. First, perform time series analysis on traffic flow data and perform smoothing and standardization processing to obtain a stable time series as model input data, which can improve the accuracy of model training and eliminate the impact of a wide range of feature values. Then, an improved LSTM model based on LSTM and bidirectional LSTM networks are established. Combining the advantages of sequential data and the long-term dependence of forwarding LSTM and reverse LSTM, the bidirectional long-term memory network (BILSTM) is integrated into the prediction model. The first layer of the LSTM network learns and predicts the input time series and further learns and trains through the bidirectional LSTM network to effectively overcome the large prediction errors. Finally, the performance of the proposed method is evaluated by comparing the predicted results with actual traffic data. The model that is proposed in this paper is compared with the long short-term memory network (LSTM) model and the bidirectional long-term memory network (BILSTM) model. The results demonstrate that the proposed method outperforms both compared methods in terms of accuracy and stability.

An Enhanced Analysis of Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function

Sameer Alani Ayad Ghany Ismaeel J. Logeshwaran + 4 lainnya

3 Oktober 2023

Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets.

Traffic Pattern Classification in Smart Cities Using Deep Recurrent Neural Network

Krishnadas Janardhanan Yuvaraj Natarajan Sameer Alani + 4 lainnya

6 Oktober 2023

This paper examines the use of deep recurrent neural networks to classify traffic patterns in smart cities. We propose a novel approach to traffic pattern classification based on deep recurrent neural networks, which can effectively capture traffic patterns’ dynamic and sequential features. The proposed model combines convolutional and recurrent layers to extract features from traffic pattern data and a SoftMax layer to classify traffic patterns. Experimental results show that the proposed model outperforms existing methods regarding accuracy, precision, recall, and F1 score. Furthermore, we provide an in-depth analysis of the results and discuss the implications of the proposed model for smart cities. The results show that the proposed model can accurately classify traffic patterns in smart cities with a precision of as high as 95%. The proposed model is evaluated on a real-world traffic pattern dataset and compared with existing classification methods.

Leveraging Neo4j and deep learning for traffic congestion simulation & optimization

S. Yusuf R. Souissi Arshad Ali Khan + 1 lainnya

1 April 2023

Traffic congestion has been a major challenge in many urban road networks. Extensive research studies have been conducted to highlight traffic-related congestion and address the issue using data-driven approaches. Currently, most traffic congestion analyses are done using simulation software that offers limited insight due to the limitations in the tools and utilities being used to render various traffic congestion scenarios. All that impacts the formulation of custom business problems which vary from place to place and country to country. By exploiting the power of the knowledge graph, we model a traffic congestion problem into the Neo4j graph and then use the load balancing, optimization algorithm to identify congestion-free road networks. We also show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads. We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion. Our results show that graph-based traffic simulation, supplemented by AI ML-based traffic prediction can be more effective in estimating the congestion level in a road network.

Deep Learning Framework with Time Series Analysis Methods for Runoff Prediction

Modi Zhu L. Kang Zhenghe Li + 1 lainnya

23 Februari 2021

Recent advances in deep learning, especially the long short-term memory (LSTM) networks, provide some useful insights on how to tackle time series prediction problems, not to mention the development of a time series model itself for prediction. Runoff forecasting is a time series prediction problem with a series of past runoff data (water level and discharge series data) as inputs and a fixed-length series of future runoff as output. Most previous work paid attention to the sufficiency of input data and the structural complexity of deep learning, while less effort has been put into the consideration of data quantity or the processing of original input data—such as time series decomposition, which can better capture the trend of runoff—or unleashing the effective potential of deep learning. Mutual information and seasonal trend decomposition are two useful time series methods in handling data quantity analysis and original data processing. Based on a former study, we proposed a deep learning model combined with time series analysis methods for daily runoff prediction in the middle Yangtze River and analyzed its feasibility and usability with frequently used counterpart models. Furthermore, this research also explored the data quality that affect the performance of the deep learning model. With the application of the time series method, we can effectively get some information about the data quality and data amount that we adopted in the deep learning model. The comparison experiment resulted in two different sites, implying that the proposed model improved the precision of runoff prediction and is much easier and more effective for practical application. In short, time series analysis methods can exert great potential of deep learning in daily runoff prediction and may unleash great potential of artificial intelligence in hydrology research.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.