DOI: 10.3390/su151914522
Terbit pada 6 Oktober 2023 Pada Sustainability

Traffic Pattern Classification in Smart Cities Using Deep Recurrent Neural Network

Krishnadas Janardhanan Yuvaraj Natarajan Sameer Alani + 4 penulis

Abstrak

This paper examines the use of deep recurrent neural networks to classify traffic patterns in smart cities. We propose a novel approach to traffic pattern classification based on deep recurrent neural networks, which can effectively capture traffic patterns’ dynamic and sequential features. The proposed model combines convolutional and recurrent layers to extract features from traffic pattern data and a SoftMax layer to classify traffic patterns. Experimental results show that the proposed model outperforms existing methods regarding accuracy, precision, recall, and F1 score. Furthermore, we provide an in-depth analysis of the results and discuss the implications of the proposed model for smart cities. The results show that the proposed model can accurately classify traffic patterns in smart cities with a precision of as high as 95%. The proposed model is evaluated on a real-world traffic pattern dataset and compared with existing classification methods.

Artikel Ilmiah Terkait

An Enhanced Analysis of Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function

Sameer Alani Ayad Ghany Ismaeel J. Logeshwaran + 4 lainnya

3 Oktober 2023

Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets.

Traffic Flow Forecast Through Time Series Analysis Based on Deep Learning

Mingfang Huang Jianhu Zheng

2020

Traffic congestion is a thorny issue to many large and medium-sized cities, posing a serious threat to sustainable urban development. Recently, intelligent traffic system (ITS) has emerged as an effective tool to mitigate urban congestion. The key to the ITS lies in the accurate forecast of traffic flow. However, the existing forecast methods of traffic flow cannot adapt to the stochasticity and sheer length of traffic flow time series. To solve the problem, this paper relies on deep learning (DL) to forecast traffic flow through time series analysis. The authors developed a traffic flow forecast model based on the long short-term memory (LSTM) network. The proposed model was compared with two classic forecast models, namely, the autoregressive integrated moving average (ARIMA) model and the backpropagation neural network (BPNN) model, through long-term traffic flow forecast experiments, using an actual traffic flow time series from OpenITS. The experimental results show that the proposed LSTM network outperformed the classic models in prediction accuracy. Our research discloses the dynamic evolution law of traffic flow, and facilitates the decision-making of traffic management.

Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method

Jibiao Zhou Changxi Ma G. Dai

26 Februari 2021

The real-time performance and accuracy of traffic flow prediction directly affect the efficiency of traffic flow guidance systems, and traffic flow prediction is a hotspot in the field of intelligent transportation. To further improve the accuracy of short-term traffic flow prediction, a short-term traffic flow prediction model based on traffic flow time series analysis, and an improved long short-term memory network (LSTM) is proposed. First, perform time series analysis on traffic flow data and perform smoothing and standardization processing to obtain a stable time series as model input data, which can improve the accuracy of model training and eliminate the impact of a wide range of feature values. Then, an improved LSTM model based on LSTM and bidirectional LSTM networks are established. Combining the advantages of sequential data and the long-term dependence of forwarding LSTM and reverse LSTM, the bidirectional long-term memory network (BILSTM) is integrated into the prediction model. The first layer of the LSTM network learns and predicts the input time series and further learns and trains through the bidirectional LSTM network to effectively overcome the large prediction errors. Finally, the performance of the proposed method is evaluated by comparing the predicted results with actual traffic data. The model that is proposed in this paper is compared with the long short-term memory network (LSTM) model and the bidirectional long-term memory network (BILSTM) model. The results demonstrate that the proposed method outperforms both compared methods in terms of accuracy and stability.

Graph Convolutional Adversarial Networks for Spatiotemporal Anomaly Detection

Zhenya Huang Leyan Deng Enhong Chen + 1 lainnya

4 Januari 2022

Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens’ quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.

When Smart Cities Get Smarter via Machine Learning: An In-depth Literature Review

Makó Csaba Amir H. Mosavi Mehdi Sookhak + 7 lainnya

2022

The manuscript represents a comeprehensive and systematic literature review on the machine learning methods in the emerging applications of smart city. Application domains include the essential aspect of the smart cities including the energy, healthcare, transportation, security, and pollution. The methodology presents the state-of-the-art, taxonomy, evaluation and model performance. The study concludes that the hybrid models and ensembles are the best performers since they exhibit both high accuracy and not-costly complexity. On the other hand, the deep learning (DL) techniques had higher accuracy than the hybrid models and ensembles, but they demanded relatively higher computation power. Moreover, all these advanced ML methods had a slower processing speed than the single methods. Likewise, the support vector machine (SVM) and decision tree (DT) generally outperformed the artificial neural network (ANN) for accuracy and other metrics. However, since the difference is negligible, it can be concluded that using either of them is appropriate. The study’s findings identify the pros and cons of the methods in each application for future researchers, practitioners, and policy-makers for the right problem within the context of smart cities.

Daftar Referensi

1 referensi

IoMT-Assisted Medical Vehicle Routing Based on UAV-Borne Human Crowd Sensing and Deep Learning in Smart Cities

Lianyong Qi Varun G. Menon + 5 lainnya

1 November 2023

An emergency medical vehicle can save the patient’s life if it arrives at his location as quickly as possible. Unmanned aerial vehicles (UAVs) offer wide visibility and mobility, making them a viable choice for smart cities and intelligent transportation systems (ITSs) as edge devices for the Internet of Things (IoT). Based on population behavior and overcrowding, video surveillance through the Internet of multimedia things (IoMT) and public safety in smart cities can help determine the most efficient routes for emergency medical vehicles. This study investigates UAV overcrowding and abnormal population activity patterns, which affect the flow of emergency medical vehicles and traffic flow. Moreover, the purpose of this article is to analyze received video frames from UAVs in order to identify the most efficient route for emergency medical vehicles in smart cities to transfer patients in the event of abnormalities or overcrowding. In order to detect overcrowding on the streets, a hybrid Cascade-ResNet is utilized, which detects congestion based on many data points. Based on our proposed approach, we achieve a 2.5% improvement over similar methods because it is effective, flexible, and accurate. UAV video frames can be used to communicate with emergency response vehicles, to monitor traffic congestion, and to monitor other aspects of smart city life.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.