Revising human-systems engineering principles for embedded AI applications
Abstrak
The recent shift from predominantly hardware-based systems in complex settings to systems that heavily leverage non-deterministic artificial intelligence (AI) reasoning means that typical systems engineering processes must also adapt, especially when humans are direct or indirect users. Systems with embedded AI rely on probabilistic reasoning, which can fail in unexpected ways, and any overestimation of AI capabilities can result in systems with latent functionality gaps. This is especially true when humans oversee such systems, and such oversight has the potential to be deadly, but there is little-to-no consensus on how such system should be tested to ensure they can gracefully fail. To this end, this work outlines a roadmap for emerging research areas for complex human-centric systems with embedded AI. Fourteen new functional and tasks requirement considerations are proposed that highlight the interconnectedness between uncertainty and AI, as well as the role humans might need to play in the supervision and secure operation of such systems. In addition, 11 new and modified non-functional requirements, i.e., “ilities,” are provided and two new “ilities,” auditability and passive vulnerability, are also introduced. Ten problem areas with AI test, evaluation, verification and validation are noted, along with the need to determine reasonable risk estimates and acceptable thresholds for system performance. Lastly, multidisciplinary teams are needed for the design of effective and safe systems with embedded AI, and a new AI maintenance workforce should be developed for quality assurance of both underlying data and models.
Artikel Ilmiah Terkait
B. Shneiderman
10 Februari 2020
ABSTRACT Well-designed technologies that offer high levels of human control and high levels of computer automation can increase human performance, leading to wider adoption. The Human-Centered Artificial Intelligence (HCAI) framework clarifies how to (1) design for high levels of human control and high levels of computer automation so as to increase human performance, (2) understand the situations in which full human control or full computer control are necessary, and (3) avoid the dangers of excessive human control or excessive computer control. The methods of HCAI are more likely to produce designs that are Reliable, Safe & Trustworthy (RST). Achieving these goals will dramatically increase human performance, while supporting human self-efficacy, mastery, creativity, and responsibility.
Davinder Kaur Suleyman Uslu A. Durresi + 1 lainnya
18 Januari 2022
Artificial intelligence (AI) and algorithmic decision making are having a profound impact on our daily lives. These systems are vastly used in different high-stakes applications like healthcare, business, government, education, and justice, moving us toward a more algorithmic society. However, despite so many advantages of these systems, they sometimes directly or indirectly cause harm to the users and society. Therefore, it has become essential to make these systems safe, reliable, and trustworthy. Several requirements, such as fairness, explainability, accountability, reliability, and acceptance, have been proposed in this direction to make these systems trustworthy. This survey analyzes all of these different requirements through the lens of the literature. It provides an overview of different approaches that can help mitigate AI risks and increase trust and acceptance of the systems by utilizing the users and society. It also discusses existing strategies for validating and verifying these systems and the current standardization efforts for trustworthy AI. Finally, we present a holistic view of the recent advancements in trustworthy AI to help the interested researchers grasp the crucial facets of the topic efficiently and offer possible future research directions.
Xiwei Xu Liming Zhu J. Whittle + 2 lainnya
9 Maret 2022
Although AI is transforming the world, there are serious concerns about its ability to behave and make decisions responsibly. Many ethical regulations, principles, and frameworks for responsible AI have been issued recently. However, they are high level and difficult to put into practice. On the other hand, most AI researchers focus on algorithmic solutions, while the responsible AI challenges actually crosscut the entire engineering lifecycle and components of AI systems. To close the gap in operationalizing responsible AI, this paper aims to develop a roadmap on software engineering for responsible AI. The roadmap focuses on (i) establishing multi-level governance for responsible AI systems, (ii) setting up the development processes incorporating process-oriented practices for responsible AI systems, and (iii) building responsible-AI-by-design into AI systems through system-level architectural style, patterns and techniques. CCS CONCEPTS • Software and its engineering;
Xavier Franch Julien Siebert Anna Maria Vollmer + 5 lainnya
5 Mei 2021
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
Q. Lu J. Whittle Liming Zhu + 1 lainnya
1 Mei 2023
Responsible artificial intelligence (AI) issues often occur at the system level, crosscutting many system components and the entire software engineering lifecycle. We summarize design patterns that can be embedded into AI systems as product features to contribute to responsible-AI-by-design.
Daftar Referensi
1 referensiArtikel yang Mensitasi
0 sitasiTidak ada artikel yang mensitasi.