DOI: -
Terbit pada 2 Februari 2021 Pada arXiv.org

Federated Learning in Smart Cities: A Comprehensive Survey

Yize Zhou Boyi Liu Keqiu Li + 3 penulis

Abstrak

Federated learning plays an important role in the process of smart cities. With the development of big data and artificial intelligence, there is a problem of data privacy protection in this process. Federated learning is capable of solving this problem. This paper starts with the current developments of federated learning and its applications in various fields. We conduct a comprehensive investigation. This paper summarize the latest research on the application of federated learning in various fields of smart cities. In-depth understanding of the current development of federated learning from the Internet of Things, transportation, communications, finance, medical and other fields. Before that, we introduce the background, definition and key technologies of federated learning. Further more, we review the key technologies and the latest results. Finally, we discuss the future applications and research directions of federated learning in smart cities.

Artikel Ilmiah Terkait

Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges

Yize Zhou Yilong Sun Zhaohua Zheng + 3 lainnya

2 Februari 2021

Federated learning (FL) plays an important role in the development of smart cities. With the evolution of big data and artificial intelligence, issues related to data privacy and protection have emerged, which can be solved by FL. In this paper, the current developments in FL and its applications in various fields are reviewed. With a comprehensive investigation, the latest research on the application of FL is discussed for various fields in smart cities. We explain the current developments in FL in fields, such as the Internet of Things (IoT), transportation, communications, finance, and medicine. First, we introduce the background, definition, and key technologies of FL. Then, we review key applications and the latest results. Finally, we discuss the future applications and research directions of FL in smart cities.

A survey on federated learning in data mining

Yihan Lv Chen Zhang Bin Yu + 2 lainnya

9 Desember 2021

Data mining is a process to extract unknown, hidden, and potentially useful information from data. But the problem of data island makes it arduous for people to collect and analyze scattered data, and there is also a privacy security issue when mining data. A collaboratively decentralized approach called federated learning unites multiple participants to generate a shareable global optimal model and keeps privacy‐sensitive data on local devices, which may bring great hope to us for solving the problems of decentralized data and privacy protection. Though federated learning has been widely used, few systematic studies have been conducted on the subject of federated learning in data mining. Hence, different from prior reviews in this field, we make a comprehensive summary and provide a novel taxonomy of the application of federated learning in data mining. This article starts by providing a thorough description of the relevant definitions and concepts, followed by an in‐depth investigation on the challenges faced by federated learning. In this context, we elaborate four taxonomies of major applications of federated learning in data mining, including education, healthcare, IoT, and intelligent transportation, and discuss them comprehensively. Finally, we discuss four promising research directions for further research, that is, privacy enhancement, improvement of communication efficiency, heterogeneous system processing, and reducing economic costs.

Federated Learning for Internet of Things: A Comprehensive Survey

F. I. H. Vincent Poor Dinh C. Nguyen Ming Ding + 3 lainnya

16 April 2021

The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.

Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Communication and Networking Systems

O. A. Wahab A. Mourad T. Taleb + 1 lainnya

10 Februari 2021

The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern systems in the field. Traditional machine learning solutions assume the existence of (cloud-based) central entities that are in charge of processing the data. Nonetheless, the difficulty of accessing private data, together with the high cost of transmitting raw data to the central entity gave rise to a decentralized machine learning approach called Federated Learning. The main idea of federated learning is to perform an on-device collaborative training of a single machine learning model without having to share the raw training data with any third-party entity. Although few survey articles on federated learning already exist in the literature, the motivation of this survey stems from three essential observations. The first one is the lack of a fine-grained multi-level classification of the federated learning literature, where the existing surveys base their classification on only one criterion or aspect. The second observation is that the existing surveys focus only on some common challenges, but disregard other essential aspects such as reliable client selection, resource management and training service pricing. The third observation is the lack of explicit and straightforward directives for researchers to help them design future federated learning solutions that overcome the state-of-the-art research gaps. To address these points, we first provide a comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches. We then survey and highlight the applications and future directions of federated learning in the domain of communication and networking. Thereafter, we design a three-level classification scheme that first categorizes the federated learning literature based on the high-level challenge that they tackle. Then, we classify each high-level challenge into a set of specific low-level challenges to foster a better understanding of the topic. Finally, we provide, within each low-level challenge, a fine-grained classification based on the technique used to address this particular challenge. For each category of high-level challenges, we provide a set of desirable criteria and future research directions that are aimed to help the research community design innovative and efficient future solutions. To the best of our knowledge, our survey is the most comprehensive in terms of challenges and techniques it covers and the most fine-grained in terms of the multi-level classification scheme it presents.

Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges

L. U. Khan E. Hossain Zhu Han + 2 lainnya

28 September 2020

The Internet of Things (IoT) will be ripe for the deployment of novel machine learning algorithm for both network and application management. However, given the presence of massively distributed and private datasets, it is challenging to use classical centralized learning algorithms in the IoT. To overcome this challenge, federated learning can be a promising solution that enables on-device machine learning without the need to migrate the private end-user data to a central cloud. In federated learning, only learning model updates are transferred between end-devices and the aggregation server. Although federated learning can offer better privacy preservation than centralized machine learning, it has still privacy concerns. In this paper, first, we present the recent advances of federated learning towards enabling federated learning-powered IoT applications. A set of metrics such as sparsification, robustness, quantization, scalability, security, and privacy, is delineated in order to rigorously evaluate the recent advances. Second, we devise a taxonomy for federated learning over IoT networks. Finally, we present several open research challenges with their possible solutions.

Daftar Referensi

0 referensi

Tidak ada referensi ditemukan.

Artikel yang Mensitasi

0 sitasi

Tidak ada artikel yang mensitasi.